Home
Class 14
MATHS
Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(...

Value of `1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99)` is

A

1

B

9

C

`sqrt99`

D

`sqrt(99-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the series \( S = \frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{4} + \sqrt{3}} + \ldots + \frac{1}{\sqrt{100} + \sqrt{99}} \), we will rationalize each term in the series. ### Step-by-Step Solution: 1. **Rationalize the first term**: \[ \frac{1}{\sqrt{2} + 1} \cdot \frac{\sqrt{2} - 1}{\sqrt{2} - 1} = \frac{\sqrt{2} - 1}{(\sqrt{2})^2 - 1^2} = \frac{\sqrt{2} - 1}{2 - 1} = \sqrt{2} - 1 \] 2. **Rationalize the second term**: \[ \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \] 3. **Rationalize the third term**: \[ \frac{1}{\sqrt{4} + \sqrt{3}} \cdot \frac{\sqrt{4} - \sqrt{3}}{\sqrt{4} - \sqrt{3}} = \frac{\sqrt{4} - \sqrt{3}}{(\sqrt{4})^2 - (\sqrt{3})^2} = \frac{\sqrt{4} - \sqrt{3}}{4 - 3} = \sqrt{4} - \sqrt{3} = 2 - \sqrt{3} \] 4. **Continue rationalizing subsequent terms**: - For \( n = 4 \): \[ \frac{1}{\sqrt{5} + \sqrt{4}} \cdot \frac{\sqrt{5} - \sqrt{4}}{\sqrt{5} - \sqrt{4}} = \sqrt{5} - 2 \] - For \( n = 5 \): \[ \frac{1}{\sqrt{6} + \sqrt{5}} \cdot \frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} - \sqrt{5}} = \sqrt{6} - \sqrt{5} \] - Continue this process up to \( n = 100 \). 5. **Combine all terms**: The series can be expressed as: \[ S = (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (2 - \sqrt{3}) + (\sqrt{5} - 2) + \ldots + (\sqrt{100} - \sqrt{99}) \] 6. **Notice the cancellation**: When we add all these terms, we see that most terms cancel out: - \( -1 \) from the first term remains. - \( +\sqrt{2} \) from the first term cancels with \( -\sqrt{2} \) from the second term. - \( +\sqrt{3} \) from the second term cancels with \( -\sqrt{3} \) from the third term. - This pattern continues until \( +\sqrt{99} \) cancels with \( -\sqrt{99} \) from the last term. 7. **Final result**: The only terms that do not cancel are \( -1 \) from the first term and \( +\sqrt{100} \) from the last term: \[ S = \sqrt{100} - 1 = 10 - 1 = 9 \] ### Final Answer: The value of the series is \( \boxed{9} \).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

(sqrt2 +1)/(sqrt3)

1/(1+ sqrt2 + sqrt3)

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

What is value the of 5/(sqrt2+1)+5/(sqrt3+sqrt2)+5/(sqrt4+sqrt3)+….. 5/(sqrt121+sqrt120)? (a)25 (b)50 (c)100 (d)75

1/(1-sqrt2-sqrt3)=

The value of (1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16) is

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)