Home
Class 14
MATHS
If ((2^(n+4)-2.2^(n))/(2.2^(n+3) )+ 2...

If `((2^(n+4)-2.2^(n))/(2.2^(n+3) )+ 2^(-3) )=x`, then the value of x is

A

a. `-2^(n+1)+1/8`

B

b. 1

C

c. `2^(n+1)`

D

d. `n/8-2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression given in the question, we will follow these steps: ### Step 1: Write the expression clearly We start with the expression: \[ \frac{2^{n+4} - 2 \cdot 2^n}{2 \cdot 2^{n+3}} + 2^{-3} = x \] ### Step 2: Simplify the numerator In the numerator \(2^{n+4} - 2 \cdot 2^n\), we can factor out \(2^n\): \[ 2^{n+4} - 2 \cdot 2^n = 2^n(2^4 - 2) = 2^n(16 - 2) = 2^n \cdot 14 \] ### Step 3: Simplify the denominator In the denominator \(2 \cdot 2^{n+3}\), we can simplify it as: \[ 2 \cdot 2^{n+3} = 2^{1} \cdot 2^{n+3} = 2^{n+4} \] ### Step 4: Rewrite the expression Now we can rewrite the expression as: \[ \frac{2^n \cdot 14}{2^{n+4}} + 2^{-3} = x \] ### Step 5: Simplify the fraction The fraction simplifies to: \[ \frac{14}{2^{4}} = \frac{14}{16} = \frac{7}{8} \] ### Step 6: Add \(2^{-3}\) Next, we need to add \(2^{-3}\) to \(\frac{7}{8}\): \[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \] Now we can add: \[ \frac{7}{8} + \frac{1}{8} = \frac{7 + 1}{8} = \frac{8}{8} = 1 \] ### Step 7: Conclusion Thus, we find that: \[ x = 1 \] ### Final Answer The value of \(x\) is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

The value of (2^(n+4)-2*2^(n))/(2.2^(n+3))+2^(-3)

If ((243)^((n)/(5))3^(2n+1))/(9^(n)3^(n-1))=x, then the value of x is

If x^3+2x^(2)-3x+4=0 then the value of s_n ,is

If L=lim_(x rarr oo)(2x3^(2)x2^(3)x3^(4)...x2^(n-1)x3^(n))^((1)/((n^(2)+1))), then the value of L^(4) is

(i) If (n!)/(2.(n-2)!): (n!)/(4!.(n-4)!) = 2:1 , find the valye of n. (ii) If ((2n)!)/(3!(2n-3)!): (n!)/(2!(n-2)!) = 44:3 , then find the value of n.

If (1+ax)^(n)=1+6x+(27)/(2)x^(2)+....+a^(n)x^(n) then the value of a and n are respectively (i) 2,3( ii) 3,2( iii) (3)/(2),4( iv )1,6( v) (3)/(2),6

If I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N, then the value of sqrt(I_(9)) is

If f:(0,oo)rarr N and f(x)=[(x^(2)+x+1)/(x^(2)+1)]+[(4x^(2)+x+2)/(2x^(2)+1)]+[(9x^(2)+x+3)/(3x^(2)+1)]...+[(n^(2)x^(2)+x+n)/(nx^(2)+1)],n in N." Then lim_(n rarr oo)((f(x)-n)/((f(x))^(2)-(n^(3)(n+2))/(4)))=l, then the value of l^(10)-10^(l) is (where [.] denotes G.I.F and N set of natural numbers)