Home
Class 14
MATHS
Find the value of m - n, if (9^(n)xx3^...

Find the value of m - n, if
`(9^(n)xx3^(2)xx(3^((-n)/2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=1/27`

A

1

B

-2

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation and find the value of \( m - n \), we start with the given expression: \[ \frac{9^n \cdot 3^2 \cdot (3^{-\frac{n}{2}})^{-2} - 27^n}{3^{3m} \cdot 2^3} = \frac{1}{27} \] ### Step 1: Rewrite the terms in base 3 First, we rewrite \( 9^n \) and \( 27^n \) in terms of base 3: - \( 9^n = (3^2)^n = 3^{2n} \) - \( 27^n = (3^3)^n = 3^{3n} \) Now, substitute these into the equation: \[ \frac{3^{2n} \cdot 3^2 \cdot (3^{-\frac{n}{2}})^{-2} - 3^{3n}}{3^{3m} \cdot 2^3} = \frac{1}{27} \] ### Step 2: Simplify the expression Next, simplify \( (3^{-\frac{n}{2}})^{-2} \): \[ (3^{-\frac{n}{2}})^{-2} = 3^{n} \] Now substitute this back into the equation: \[ \frac{3^{2n} \cdot 3^2 \cdot 3^n - 3^{3n}}{3^{3m} \cdot 2^3} = \frac{1}{27} \] Combine the powers of 3 in the numerator: \[ 3^{2n} \cdot 3^2 \cdot 3^n = 3^{2n + 2 + n} = 3^{3n + 2} \] So the equation now looks like: \[ \frac{3^{3n + 2} - 3^{3n}}{3^{3m} \cdot 2^3} = \frac{1}{27} \] ### Step 3: Factor out \( 3^{3n} \) Factor \( 3^{3n} \) from the numerator: \[ \frac{3^{3n}(3^2 - 1)}{3^{3m} \cdot 2^3} = \frac{1}{27} \] Calculate \( 3^2 - 1 = 9 - 1 = 8 \): \[ \frac{3^{3n} \cdot 8}{3^{3m} \cdot 2^3} = \frac{1}{27} \] ### Step 4: Simplify further Since \( 2^3 = 8 \), the equation simplifies to: \[ \frac{3^{3n} \cdot 8}{3^{3m} \cdot 8} = \frac{1}{27} \] Cancel \( 8 \): \[ \frac{3^{3n}}{3^{3m}} = \frac{1}{27} \] ### Step 5: Rewrite \( \frac{1}{27} \) Rewrite \( \frac{1}{27} \) as \( 3^{-3} \): \[ 3^{3n - 3m} = 3^{-3} \] ### Step 6: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 3n - 3m = -3 \] ### Step 7: Solve for \( n - m \) Divide the entire equation by 3: \[ n - m = -1 \] ### Step 8: Rearranging gives us \( m - n \) Rearranging gives: \[ m - n = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , then find m-n .

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , prove that m-n=1.

(9^(n)xx3^(2)xx3^(n)-(27)^(n))/((3^(3))^(5)xx2^(3))=(1)/(27)

If (9^(n+2)xx(3^(-(n)/(2)))^(-2)-27^(n))/(3^(3m)xx2^(3)xx10)=(1)/(27) prove

If (9^nx3^2x(3^(-n/2))^(-2)-(27)^n)/(3^(3m)x2^3)=1/(27), Prove that m-n=1.

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

if (9^(n)*3^(2)*(3^(-(n)/(2))hat -(-2))-27^(n))/(3^(3m)*2^(3))=(1)/(27) then prove that m-n=1

If (9^(n)x3^(2)x3^(n)-27^(n))/(3^(3m)x2^(3))=(1)/(27), prove that m-n=1

Find the value of n. (2^(n)xx2^(6))/(2^(-3))=2^(18)