Home
Class 14
MATHS
If (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3, then ...

If `(5+2sqrt3)/(7+4sqrt3)=a+bsqrt3`, then the value of a and b is

A

a = 11, b = -6

B

a = 6, b = 11

C

a = -11, b = 6

D

a = -11, b = -6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a + b\sqrt{3}\), we will follow these steps: ### Step 1: Rationalize the Denominator To eliminate the square root in the denominator, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of \(7 + 4\sqrt{3}\) is \(7 - 4\sqrt{3}\). \[ \frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} \cdot \frac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} = \frac{(5 + 2\sqrt{3})(7 - 4\sqrt{3})}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} \] ### Step 2: Simplify the Denominator Using the difference of squares formula \(a^2 - b^2\), we can simplify the denominator: \[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] ### Step 3: Expand the Numerator Now we expand the numerator: \[ (5 + 2\sqrt{3})(7 - 4\sqrt{3}) = 5 \cdot 7 + 5 \cdot (-4\sqrt{3}) + 2\sqrt{3} \cdot 7 + 2\sqrt{3} \cdot (-4\sqrt{3}) \] Calculating each term: - \(5 \cdot 7 = 35\) - \(5 \cdot (-4\sqrt{3}) = -20\sqrt{3}\) - \(2\sqrt{3} \cdot 7 = 14\sqrt{3}\) - \(2\sqrt{3} \cdot (-4\sqrt{3}) = -8 \cdot 3 = -24\) Combining these gives: \[ 35 - 20\sqrt{3} + 14\sqrt{3} - 24 = (35 - 24) + (-20\sqrt{3} + 14\sqrt{3}) = 11 - 6\sqrt{3} \] ### Step 4: Combine the Results Now, we can write the entire expression: \[ \frac{11 - 6\sqrt{3}}{1} = 11 - 6\sqrt{3} \] ### Step 5: Identify \(a\) and \(b\) From the expression \(11 - 6\sqrt{3}\), we can equate it to \(a + b\sqrt{3}\): \[ a = 11 \quad \text{and} \quad b = -6 \] ### Final Answer Thus, the values of \(a\) and \(b\) are: \[ \boxed{11} \quad \text{and} \quad \boxed{-6} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

If (4+2sqrt5)/(4-3sqrt5) = a+bsqrt5 ,then

If (sqrt7-sqrt5)/(sqrt7+sqrt5)=a+bsqrt(35) , then the value of (a - b) is

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(2+sqrt(3))/(2-sqrt(3))=a+bsqrt(3)

if a and b are rational numbers and (4+3sqrt(5))/(4-3sqrt(5))=a+b sqrt(5) then find the value of a and b