Home
Class 14
MATHS
Find the value of (a^(p)/a^(q))^(p+q-r)x...

Find the value of `(a^(p)/a^(q))^(p+q-r)xx(a^(r)/a^(p))^(r+p-q)xx(a^(q)/a^(r))^(q+r-p)`

A

`a^(pqr)`

B

`a^(p+q+r)`

C

`a^(pq+qr+pr)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{a^p}{a^q})^{p+q-r} \times (\frac{a^r}{a^p})^{r+p-q} \times (\frac{a^q}{a^r})^{q+r-p}\), we will follow these steps: ### Step 1: Simplify Each Fraction Using the property of indices \(\frac{a^m}{a^n} = a^{m-n}\), we can simplify each fraction: 1. \(\frac{a^p}{a^q} = a^{p-q}\) 2. \(\frac{a^r}{a^p} = a^{r-p}\) 3. \(\frac{a^q}{a^r} = a^{q-r}\) ### Step 2: Rewrite the Expression Now, we can rewrite the original expression using the simplified fractions: \[ (a^{p-q})^{p+q-r} \times (a^{r-p})^{r+p-q} \times (a^{q-r})^{q+r-p} \] ### Step 3: Apply the Power of a Power Rule Using the property \((a^m)^n = a^{m \cdot n}\), we can further simplify: 1. \((a^{p-q})^{p+q-r} = a^{(p-q)(p+q-r)}\) 2. \((a^{r-p})^{r+p-q} = a^{(r-p)(r+p-q)}\) 3. \((a^{q-r})^{q+r-p} = a^{(q-r)(q+r-p)}\) ### Step 4: Combine the Exponents Now, we can combine the expressions since they have the same base \(a\): \[ a^{(p-q)(p+q-r) + (r-p)(r+p-q) + (q-r)(q+r-p)} \] ### Step 5: Expand Each Term Now we will expand each term: 1. \((p-q)(p+q-r) = p^2 + pq - pr - qp - q^2 + qr\) 2. \((r-p)(r+p-q) = r^2 + rp - rq - pr - p^2 + pq\) 3. \((q-r)(q+r-p) = q^2 + qr - qp - rq - r^2 + rp\) ### Step 6: Combine All the Expanded Terms Now we combine all the expanded terms: \[ p^2 + pq - pr - qp - q^2 + qr + r^2 + rp - rq - pr - p^2 + pq + q^2 + qr - qp - rq - r^2 + rp \] ### Step 7: Simplify the Combined Expression Now we simplify the combined expression: - \(p^2\) and \(-p^2\) cancel out. - \(q^2\) and \(-q^2\) cancel out. - \(r^2\) and \(-r^2\) cancel out. - The remaining terms will cancel out as well. ### Final Result After all cancellations, we find that: \[ a^0 = 1 \] Thus, the value of the original expression is **1**.
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

((a^(9))/(a^(r)))^(p)xx((a^(r))/(a^(p)))^(q)xx((a^(p))/(a^(q)))^(r)=1

((a^(p))/(a^(q)))^(p+q)times((a^(q))/(a^(r)))^(q+r)times((a^(r))/(a^(p)))^(r+p)

((x^(p))/(x^(q)))^((p+q))((x^(q))/(x^(r)))^((q+r))((x^(r))/(x^(p)))^((r+p))

On simplification (a^p/a^q)^(p+q) xx(a^q/a^r)^(q+r)xx(a^r/a^p)^(r+p) yeilds

.prove that (a^(p+q))^(2)(a^(q+r))^(2)(a^(r+p))^(2)/((a^(p)*a^(q)*a^(r))^(4))=1

Add p(p-q),q(q-r) and r(r-p)

If a,b,c denote the sides of triangleABC , show that the value of the expression, a^3 (p-q)(p-r)+b^2(q-r)+b^2(q-r)(q-p)+c^2(r-p)(r-q) cannot be negative where p,q,r in R .

Factorize : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)