Home
Class 14
MATHS
x^(2) -365= 364, y- sqrt324= sqrt81...

`x^(2) -365= 364, y- sqrt324= sqrt81`

A

if `x gt y`

B

if `x gt= y`

C

if `x lt=y`

D

if `x lt y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given in the question, we will break it down into two parts: finding the value of \( x \) from the first equation and finding the value of \( y \) from the second equation. ### Step 1: Solve for \( x \) The first equation is: \[ x^2 - 365 = 364 \] **Step 1.1:** Add 365 to both sides of the equation to isolate \( x^2 \): \[ x^2 = 364 + 365 \] \[ x^2 = 729 \] **Step 1.2:** Now, take the square root of both sides to find \( x \): \[ x = \sqrt{729} \quad \text{or} \quad x = -\sqrt{729} \] \[ x = 27 \quad \text{or} \quad x = -27 \] ### Step 2: Solve for \( y \) The second equation is: \[ y - \sqrt{324} = \sqrt{81} \] **Step 2.1:** First, calculate \( \sqrt{324} \) and \( \sqrt{81} \): \[ \sqrt{324} = 18 \quad \text{and} \quad \sqrt{81} = 9 \] **Step 2.2:** Substitute these values back into the equation: \[ y - 18 = 9 \] **Step 2.3:** Add 18 to both sides to solve for \( y \): \[ y = 9 + 18 \] \[ y = 27 \] ### Summary of Values - The values we found are: - \( x = 27 \) or \( x = -27 \) - \( y = 27 \) ### Step 3: Compare \( x \) and \( y \) Now, we need to compare the values of \( x \) and \( y \): - Since \( x \) can be both \( 27 \) and \( -27 \), we have: - If \( x = 27 \), then \( x = y \). - If \( x = -27 \), then \( x < y \). ### Conclusion The relationship between \( x \) and \( y \) can be established as: - \( x \) can be equal to \( y \) when \( x = 27 \). - \( x \) is less than \( y \) when \( x = -27 \).
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ARIHANT SSC|Exercise Exercise Higher Skill Level questions|19 Videos
  • QUADRATIC EQUATIONS

    ARIHANT SSC|Exercise Multi concept questions|3 Videos
  • PROFIT, LOSS AND DISCOUNT

    ARIHANT SSC|Exercise EXERCISE (LEVEL 2)|45 Videos
  • RACES AND GAMES OF SKILL

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|27 Videos

Similar Questions

Explore conceptually related problems

If the value of (3x sqrt y+2y sqrt x)/(3x sqrt y-2y sqrt x)-(3x sqrt y-2y sqrt x)/(3x sqrt y+2y sqrt x) is same as that of sqrt x sqrt y , then which of the following relations between x and y is correct? यदि (3x sqrt y+2y sqrt x)/(3x sqrt y-2y sqrt x)-(3x sqrt y-2y sqrt x)/(3x sqrt y+2y sqrt x) का मान sqrt x sqrt y के समान है, तो निम्नलिखित में से कौन सा संबंध x और y के बीच सही है?

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

If 5 sqrt5 x^3-81 sqrt3 y^3 div sqrt5 x-3 sqrt3 y=Ax^2+By^2+Cxy , then the value of (6A+B-sqrt15 C) is: यदि 5 sqrt5 x^3-81 sqrt3 y^3 div sqrt5 x-3 sqrt3 y=Ax^2+By^2+Cxy है, तो (6A+B-sqrt15 C) का मान ज्ञात करें |

Evaluate : ( sqrt(2)x + sqrt(3)y ) ( sqrt(2)x + sqrt(3)y )