Home
Class 12
MATHS
" 10."x^(a)y^(b)=(x+y)^(a+b)...

" 10."x^(a)y^(b)=(x+y)^(a+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression ((x+(1)/(y))^(a)*(x-(1)/(y))^(b))/((y+(1)/(x))^(a)*(y-(1)/(x))^(b)) reduces to a.((x)/(y))^(a-b) b.((y)/(x))^(a-b)backslash c((x)/(y))^(a+b)d.((y)/(x))^(a+b)

Simplify : : ( ( x+(1)/(y)) ^(a) ( x-(1)/(y))^(b))/((y+(1)/(x))^(a) (y-(1)/(x))^(b))

Divide: x^(4a)+x^(2a)y^(2b)+y^(4b)byx^(2a)+x^(a)y^(b)+y^(2b)

Divide: x^(4a)+x^(2a)y^(2b)+y^(4b)\ b y\ \ x^(2a)+\ x^a\ y^b+\ y^(2b)

If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^(2)) is

Factorise : (x+y) (a+b) + (x-y) (a+b)

If [x+y]^(a+b)=x^a.y^b then dy/dx = (a) y/x (b) x/y (c) y/(a+x) (d) x/(b+y)

If the point P(x, y) be equidistant from the points (a+b, b-a) and (a-b, a + b) , prove that (a-b)/(a+b) = (x-y)/(x+y) .

If the point P(x, y) be equidistant from the points (a+b, b-a) and (a-b, a + b) , prove that (a-b)/(a+b) = (x-y)/(x+y) .