Home
Class 12
MATHS
int(x^(2))/((x^(2)+1)(x^(2)+4))dx...

int(x^(2))/((x^(2)+1)(x^(2)+4))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(2))/((x^(2)+1)(3x^(2)+4))dx

int(x^(2))/((x^(2)+1)(x^(2)+4)(x^(2)+9))dx

Evaluate: int(2x^(2)+1)/(x^(2)(x^(2)+4))dx

int((x^(2)+2))/((x^(2)+1)(x^(2)+4))dx( for 0

If int((x^(2)+2))/((x^(2)+1)(x^(2)+4))dx=ktan^(-1)((mx)/(c-x^(2))) , then find the value of 3k+m+c.

If int((x^(2)+2))/((x^(2)+1)(x^(2)+4))dx=ktan^(-1)((mx)/(c-x^(2))) , then find the value of 3k+m+c.

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is