Home
Class 12
MATHS
tan^(-1)(2)/(3)=(1)/(2)tan^(-1)(12)/(5)...

tan^(-1)(2)/(3)=(1)/(2)tan^(-1)(12)/(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

Prove: tan^(-1)(2/3)=1/2tan^(-1)(12/5)

Prove: tan^(-1)(2/3)=1/2tan^(-1)(12/5)

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove that: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

(1)/(2)tan^(-1)((12)/(5)) is equal to

tan^(-1)((1)/(1+1.2))+tan^(-1)((1)/(1)+2.3)+...+tan^(-1)((1)/(1+n(n+1)))=tan^(-1)theta then find the value of theta.

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))