Home
Class 12
MATHS
x(dy)/(dx)-y=2x^2secx...

`x(dy)/(dx)-y=2x^2secx`

Promotional Banner

Similar Questions

Explore conceptually related problems

x (dy)/(dx) - y = 2x ^(2) secx

Solve the following differential equations (dy)/(dx)=secx(2secx+tanx)

Solve the following differential equations (dy)/(dx)=secx(2secx+tanx)

(dy)/(dx)-(y)/(x)=2x^(2)

(dy)/(dx)-(y)/(x)=2x^(2)

x (dy)/(dx) - y = 2x ^(3)

secx (dy)/(dx) -y = sin x

dy/dx - y/x = 2x^2

If y=logtan(pi/4+x/2) , show that : (dy)/(dx)-secx=0 .

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) (x(dy)/(dx)-y) ^2 (b) x (dy/dx)-y (c) y(dy/dx)-x (d) (y(dy/dx)-x)^2