Home
Class 12
MATHS
(1)/(sqrt(x^(2)+2ax+b^(2)))...

(1)/(sqrt(x^(2)+2ax+b^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sqrt(ax-x^(2)))

The value of f(0), so that the function f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x, given by a^((3)/(2))( b) a^((1)/(2))(c)-a^((1)/(2))(d)-a^((3)/(2))

Differentiate sin^(-1)(2ax sqrt(1-a^(2)x^(2))) with respect to sqrt(1-a^(2)x^(2)), if -1/(sqrt(2))

IfI=int(dx)/((2ax+x^(2))^((3)/(2))), then I is equal to (a) -(x+a)/(sqrt(2ax+x^(2)))+c(b)-(1)/(a)(x+a)/(sqrt(2ax+x^(2)))+c(c)-(1)/(a^(2))(x+a)/(sqrt(2ax+x^(2)))+c(d)-(1)/(a^(3))(x+a)/(sqrt(2ax+x^(3)))+c

The value of int(ax^(2))/(x sqrt(c^(2)x^(2)-(ax^(2)+b)^(2)))(1)/(c)sin^(-1)(ax+(b)/(x))+k csin^(-1)(a+(b)/(x))+esin^(-1)((ax+(b)/(x))/(c))+k( d) none of these

What is lim_(xtooo) (sqrt(a^(2)x^(2)ax+1)sqrt(a^(2)x^(2)+1)) equal to?

The value of int((ax^(2)-b)dx)/(x sqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is equal to

If int (x sqrt(x) -1)/(sqrt(x) -1) dx = ax^(2) + bx^(3//2) + cx + d then ascending order of a, b, c, is

int(2x^(2)+3x+3)/(sqrt(2x^(2)+2x+2))dx=ax sqrt(x^(2)+2x+2)+b ln|(x+1)+sqrt((x+1)^(2))+1|+

Let a, b, c be non zero numbers such that int_(0)^(3)sqrt(x^(2)+x+1)(ax^(2)+bx+c)dx=int_(0)^(5)sqrt(1+x^(2)+x)(ax^(2)+bx+c)dx . Then the quadratic equation ax^(2)+bx+c=0 has