Home
Class 12
MATHS
Let T(r ) be the rth term of an A.P. fo...

Let `T_(r ) ` be the rth term of an A.P. for r = 1,2,3,`"…………….."` If for some positive integers m,n we have `T_(m) = ( 1)/( n ) ` and `T_(n) = ( 1)/( m ) `, then `T_(mn)` equals `:`

A

`( 1) /( mn ) `

B

`( 1)/( m ) + ( 1)/ ( n ) `

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

Let T_(r ) be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers, m,n,mcancel(=)n, T_(n) = ( 1)/( n ) and T_(n) = ( 1)/( m) , then a -d equals :

For a positive integer n, let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+ . . .+(1)/(2^(n)-1) Then:

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

If sum_(r=1)^(infty) tan ^(-1)((1)/(2 r^(2)))=t then tan t is equal to

If I(m,n) = int_0^1 t^m (1 + t)^n dt , m, n in R , then I(m, n) is :

In a sequence, if T_(n+1)=4n+5 , then T_n is:

Find the sum of first 24 terms of on AP t_(1),t_(2),t_(3),"....", if it is known that t_(1) + t_(5) + t_(10) + t_(15) + t_(20) + t_(24)=225.

Write the nth term of the A.P. (1)/(m) , (1+m)/(m) , (1+2m)/(m) ,…

If Aa n dB are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A=

IF m^(th) term of an A.P. is n and n^(th) term is m, then find p^(th) term?