Home
Class 12
MATHS
The value of the sume sum(n=1)^(13) ( i^...

The value of the sume `sum_(n=1)^(13) ( i^(n) + i^(n+1))`, where `i = sqrt( -1)` , equals `:`

A

i

B

`i-1`

C

`-i`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

The value of sum_(n=1)^(10) n is:

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

The maximum value of n lt 101 such that 1+sum_(k=1)^(n)i^(k)=0 is

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

If sum_(i=1)^(2n) sin^(-1) x_i =npi , then sum_(i=1)^(2n) x_i is equal to :