Home
Class 12
MATHS
If log 2, log ( 2^(x) - 1) and log ( 2^(...

If log 2, log `( 2^(x) - 1)` and `log ( 2^(x) + 3)` are in A.P., then 2,`2^(x) -1 , 2^(x) + 3 ` are in `:`

A

A.P.

B

H.P.

C

G.P.

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

If log_(3) 2, log_(3) ( 2^(x) - 5) and log_(3) ( 2^(x) - ( 7)/( 2)) are in A.P., then x is equal to :

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

If ln ( a+c ) , ln ( c-a) , ln(a-2b+c) are in A.P., then :

If 1,(1)/(2) log_(3)(3^(1-x)+2),log_(3)(4.3^(x)-1) are in A.P., then x equals :

If log_(2) (9^(x - 1) + 7) - log_(2) (3^(x-1) + 1) = 2 , then values of x are

int 2^(x)[f(x) log 2 +f^(')(x)]dx =

The number of solutions of : log_(4) (x - 1)= log_(2) (x - 3) is :

lim_(x rarr 0) 2/x log (1+x) =

int [ log (log x) + (log x)^(-2)] dx is :