Home
Class 12
MATHS
log(3)2,log(6)2,log(12)2 are in :...

`log_(3)2,log_(6)2,log_(12)2` are in `:`

A

A.P.

B

G.P.

C

H.P.

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if I. x gt 1 .

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if II. 0ltxlt1 .

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :

If a=log_(24)12,b=log_(36)24, c=log_(48)36 , then show that 1+abc=2bc

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

Solve log_4(log_3x)+log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

The domain of the function : f(x)=log_(2)[log_(3)[log_(4)x]] is :

If log_(3) 2, log_(3) ( 2^(x) - 5) and log_(3) ( 2^(x) - ( 7)/( 2)) are in A.P., then x is equal to :