Home
Class 12
MATHS
The consecutive numbers (1)/( 1 + sqrt( ...

The consecutive numbers `(1)/( 1 + sqrt( n )) , ( 1)/( 1-n) , ( 1)/( 1- sqrt( n )) ` of a series are in `:`

A

H.P.

B

G.P.

C

A.P.

D

A.P.,G.P.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

((-1+i sqrt(3))/(2))^(3 n)+((-1-i sqrt(3))/(2))^(3 n)=

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The sum to infinity of the series : 1+2 ( 1-(1)/( n )) + 3( 1 - ( 1)/( n ))^(2) +"...." is :

(1)/(n !)+(1)/(2 !(n-2) !)+(1)/(4 !(n-4) !)+.... =

If ((1+i sqrt(3))/(1-i sqrt(3)))^(n) is an integer, then n=

Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1

For any integer n, the argument of ((sqrt(3)+i)^(4 n+1))/((1-i sqrt(3))^(4 n)) is

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

Lt_(n to 0)x/(sqrt(1 + x)-sqrt(1-x)) =

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :