Home
Class 12
MATHS
If x gt 1, y gt 1 , z gt 1 are in G.P.,...

If `x gt 1, y gt 1 , z gt 1 ` are in G.P., then `:`
`( 1)/( 1+ log x ) , ( 1)/( 1+ log y ) , ( 1) /( 1 + log z )` are in `:`

A

A.P.

B

H.P.

C

G.P.

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

If x gt 1 , y gt 1 , z gt 1 are in G.P. , then (1)/(1 + log x) , (1)/(1 + log y) and (1)/(1 + log z) are in

If a gt 0, b gt 0 , c gt 0 are in G.P. , then : log_(a) x , log_(b) x, log_(c ) x are in :

int(1)/(x + x log x) dx .

If | x - 1| gt 5, then :

x+y+z = 15 if 9, x,y,z,a are in A.P., while (1)/( x) + ( 1)/( y) + ( 1)/( z) = ( 5)?( 3) if 9, x,y,z,a are in H.P., then the value of a will be :

The value of the determinant |{:(1 , x , x+ z) , (1 , y , z + x) , (1 , z , x + y):}| is

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If log 2, log ( 2^(x) - 1) and log ( 2^(x) + 3) are in A.P., then 2, 2^(x) -1 , 2^(x) + 3 are in :

int_0^1 log (1/x - 1) dx is :

Let f(x)=(x)/(1+x)-log(1+x) , when x gt 0 , then f is :