Home
Class 12
MATHS
Let S(n) = ( 1)/( 1^(3)) + ( 1+2)/( 1^(3...

Let `S_(n) = ( 1)/( 1^(3)) + ( 1+2)/( 1^(3) + 2^(3)) +"...." + ( 1+ 2 + "...." + n)/(1^(3) +2^(3)"...."+n^(3)), n = 1,2,3,"....."` , Then `S_(n)` is not greater than `:`

A

`(1)/(2)`

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

For a positive integer n, let a_(n) = 1+( 1)/( 2) +( 1)/( 3) + ( 1)/( 4) + "......." + ( 1)/(( 2^(n) - 1)) . Then :

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

((1)/(2) . (2)/(2))/(1^(3))+((2)/(3) . (3)/(2))/(1^(3)+2^(3)) +((3)/(2) . (4)/(2))/(1^(3)+2^(3)+3^(3))+.. . . to n terms

For any odd integer n ge1 , n^(3) - ( n - 1)^(3) + "….." + ( -1)^(n-1)1^(3) equals :

Lt_(ntooo)((1^2 + 2^2 + 3^3+...+n^2))/((1^3 + 2^3 + 3^3+...+n^3))=

1^(2) + 1+ 2^(2) + 2 + 3^(2) + 3+"............"+n^(2) + n is equal to :

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

1+(1+2)/(2)+(1+2+3)/(3) +(1+2+3+4)/(4)+.. . to n terms =