Home
Class 12
MATHS
For a positive integer n, let a(n) = 1...

For a positive integer n, let
`a_(n) = 1+( 1)/( 2) +( 1)/( 3) + ( 1)/( 4) + "......." + ( 1)/(( 2^(n) - 1)) `. Then `:`

A

a ( 100)` le` 100

B

a( 200) `le` 100

C

a(200) `gt ` 100

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MCQ ( Level-II)|77 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS|11 Videos
  • RELATIONS

    MODERN PUBLICATION|Exercise RCQS|6 Videos
  • SETS

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|6 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

If n is a positive integer, then (1+i)^(n)+(1-i)^(n)=

(1)/(n !)+(1)/(2 !(n-2) !)+(1)/(4 !(n-4) !)+.... =

If n is a positive integer, then: (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is:

For a positive integer n, let : f_(n)(theta)=(tan.(theta)/(2))(1+sectheta)(1+sec2theta) (1+sec4theta)....(1+sec2^(n)theta) . Then :

The smallest positive integer for which (1 + i)^(2n)=(1 -l)^(2n) is

If n is an odd integer greater than or equal to 1, then the value of : n^(3) - ( n - 1)^(3) + ( n -2)^(3) - "........." + ( - 1)^(n-1) . 1^(3) is :

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

For any odd integer n ge1 , n^(3) - ( n - 1)^(3) + "….." + ( -1)^(n-1)1^(3) equals :

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n) . Then: