Home
Class 12
MATHS
Delta= |[Ax,x^(2),1],[By,y^(2),1],[Cz, z...

`Delta= |[Ax,x^(2),1],[By,y^(2),1],[Cz, z^(2),1]|` and `Delta_(1)= |[A,B,C],[x,y,z],[zy, zx,xy]|`

A

`Delta_1=-Delta`

B

`DeltaneDelta_1`

C

`Delta-Delta_1=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

|[1, x, x^2 ],[1, y, y^2],[1, z, z^2]|=

|[x,1,y+z],[y,1,z+x],[z,1,x+y]|=

If x,y,z are different and Delta = {:[( x,x^(2) , 1+x^(3)),( y,y^(2) ,1+y^(3)),( z,z^(2) ,1+z^(3)) ]:} find |Delta| .

If x,y,z are different and Delta = |(x, x^2, 1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|= 0 then show that 1 + xyz = 0

If Delta= [[0 , x , -y ],[-x , 0 , z],[ y , -z , 0 ]] then

If alpha=|(1,x,yz),(1,y,zx),(1,z,xy)|and beta=|(1,x,x^2),(1,y,y^2),(1,z,z^2)| , then

Show that |(x,x^(2),yz),(y,y^(2),zx),(z,z^(2),xy)|=(x-y)(y-z)(z-x)(xy+yz+zx)

using properties of determinant prove that {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(2)),( z,z^(2) , 1+pz^(2)) ]:} =( 1+pxyz ) ( x-y) ( y-z ) (z-x) , where p is any scalar .

Prove that |(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)|= (x-y)(y-z)(z-x)(xy + yz + zx) .

The points A(2-x,2,2), B(2,2-y,2), C(2,2,2-z) and D(1,1,1) are coplanar, then locus of P(x,y,z) is