Home
Class 12
MATHS
The number of distinct real roots of ...

The number of distinct real roots of `|(sinx,cosx,cosx),(cosx, sinx,cosx),(cosx,cosx,sinx)|=0` in the interval `(-pi)/4lexlepi/4` is :

A

0

B

2

C

1

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

int (2sinx-cosx)/(2cosx+sinx)dx =

Expand | (cosx, -sinx),(sinx , cosx)|

If sin2x=1 , then |(0,cosx,-sinx),(sinx,0,cosx),(cosx,sinx,0)| equals :

int (sinx-cosx)/(cosx+sinx)dx =

int (2cosxdx)/(sinx+cosx)

The period of (|sinx|+|cosx|)/(|sinx-cosx|) is :

If Delta(x)=|(1,cosx,1-cosx),(1+sinx,cosx,1+sinx-cosx),(sinx, sinx ,1)| then int_0^(pi//2)Delta(x) dx is equal to :

If, x,y inR , then the determinant: Delta=|(cosx,-sinx,1),(sinx,cosx,1),(cos(x+y),-sin(x+y),0)| lies in the interval .

int ((sinx+8cosx)/(4sinx+6cosx)) dx =