Home
Class 12
MATHS
If x, y, z are all different and not equ...

If x, y, z are all different and not equal to zero and
`|{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}|` = 0 then the value of `x^(-1) + y^(-1) + z^(-1)` is equal to

A

xyz

B

`x^(-1)y^(-1)z^(-1)`

C

`-x-y-z`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

If x,y,z are different and Delta = |(x, x^2, 1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|= 0 then show that 1 + xyz = 0

If x,y,z are different and Delta = {:[( x,x^(2) , 1+x^(3)),( y,y^(2) ,1+y^(3)),( z,z^(2) ,1+z^(3)) ]:} find |Delta| .

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on

If tan^(-1)x + tan^(-1)y=4pi//5 , then cot^(-1)x + cot^(-1)y is equal to

Without expanding prove that Delta ={:|( x+y,y+z,z+x) ,( z,x,y),( 1,1,1) |:} =0

if tan^(-1)x+ tan^(-1)y= (4 pi)/(5) then cot^(-1)x+ cot^(-1)y is equal to

If x > 0, y > 0, z>0 and x + y + z = 1 then the minimum value of x/(2-x)+y/(2-y)+z/(2-z) is:

The value of the determinant |{:(1 , x , x+ z) , (1 , y , z + x) , (1 , z , x + y):}| is

If cos ^(-1) x+cos ^(-1) y+cos ^(-1) z=3 pi then x y+y z+z x=