Home
Class 12
MATHS
If omega is the cube root of unity then ...

If `omega` is the cube root of unity then `{:abs((1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)):}` is

A

0

B

1

C

`omega^2`

D

`omega`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=

If w is a complex cube-root of unity then,

If omega is a complex cube root of unity , then the matrix A = [(1,omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a :

If 1, omega, omega^(2) are the cube roots of unity, then [[1, omega^(n),omega^(2n)],[omega^(n),omega^(2n),1],[omega^(2n), 1, omega^(n)]]

If omega is an imaginary cube root of unity than (1+omega-omega^(2))^(7)=

If omega(ne 1) is a cube root of unity, then |{:(1,1+omega^(2),omega^(2)),(1-i,-1,omega^(2)-1),(-i,-1+omega,-1):}| equals :

If omega is a non real cube root of unity then (a+b)(a+b omega)(a+b omega^(2)) is

If omega is a cube root of unity (1-2 omega+omega^(2))^(6)=