Home
Class 12
MATHS
If alpha , beta and gammaare roots of th...

If `alpha , beta and gamma`are roots of the equations `x^3+px+q=0` then the value of det : `[(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)]` is

A

p

B

q

C

`p^2-2q`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3+px+q=0 , then the value of the determine |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| is

If alpha, beta, gamma are the roots of x^3+a x^2+b=0 then the value of [[alpha , beta , gamma],[beta , gamma , alpha],[gamma , alpha , beta]] is

If alpha,beta and gamma are roots of x^(3) -2x+1=0,then the value of Sigma((1)/(alpha+beta-gamma)) is

If alpha , beta , gamma are the roots of the equation x^(3) + 4x + 2 = 0 ,then alpha^(3) + beta^(3) + gamma^(3) =

If alpha , beta are the roots of the equation : x^(2) + x sqrt(alpha) + beta = 0 , then the values of alpha and beta are :

If alpha, beta are the roots of the equation x^(2)+x+1=0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

If alpha, beta and gamma are the roots of the equation x^(3)-8x+8=0 , then sum alpha^(2) and sum (1)/(alpha beta) are respectively

If alpha,beta,gamma,sigma are the roots of the equation x^4+4x^3-6x^2+7x-9=0, then the value of (1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2) is

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

If alpha , beta are the roots of the equation 1 + x + x^(2) = 0 , then the matrix product [{:( 1 , beta) , (alpha , alpha):}] [{:(alpha , beta) , (1 , beta):}] is equal to