Home
Class 12
MATHS
If alpha=|(1,x,yz),(1,y,zx),(1,z,xy)|and...

If `alpha=|(1,x,yz),(1,y,zx),(1,z,xy)|and beta=|(1,x,x^2),(1,y,y^2),(1,z,z^2)|` , then

A

`alpha ne beta`

B

`alpha = beta`

C

`alpha = 2beta`

D

`alpha = -beta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

Let Delta=|(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1)| and Delta_(1)=|(A,B,C),(x,y,z),(zy,zx,xy)| then

If x,y,z are different and Delta = |(x, x^2, 1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|= 0 then show that 1 + xyz = 0

Show that |(x,x^(2),yz),(y,y^(2),zx),(z,z^(2),xy)|=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that |(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)|= (x-y)(y-z)(z-x)(xy + yz + zx) .

|[x,1,y+z],[y,1,z+x],[z,1,x+y]|=

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

Delta= |[Ax,x^(2),1],[By,y^(2),1],[Cz, z^(2),1]| and Delta_(1)= |[A,B,C],[x,y,z],[zy, zx,xy]|

If x,y,z are different and Delta = {:[( x,x^(2) , 1+x^(3)),( y,y^(2) ,1+y^(3)),( z,z^(2) ,1+z^(3)) ]:} find |Delta| .

Use the product [(1,-1,2),(0,2,-3),(3,-2,4)][(-2,-0,1),(9,2,-3),(6,1,-2)] to solve the system of equations x - y + 2z = 1 2y - 3z = 1 3x - 2y + 4z = 2