Home
Class 12
MATHS
The value of the determine : Delta=|(1!,...

The value of the determine : `Delta=|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|` is :

A

`2!`

B

`3!`

C

`4!`

D

`5!`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

Inverse [ (1,2,3),(2,3,4),(3,4,6)] is :

Evaluate the determinant Delta = {:|(1,2,4),(-1,3,0),( 4,1,0)|:}

The value of Delta=|(1^2,2^2,3^2),(2^2,3^2,4^2),(3^2,4^2,5^2)| is :

Find the minor of elements 6 in the determinants Delta = {:|( 1,2,3),(4,5,6),(7,8,9)|:}

If a, b,c are in A.P., then the value of the determinant |(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)| is :

If a,b,c are A.P then the value of the determinant |(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|

If a , b , c are unequal , what is the condition that value of the following determinant is zero ? Delta=|(a,a^2,a^3+1),(b,b^2,b^3+1),(c,c^2,c^3+1)|

Expand |{:(1,2,3),(4,6,2),(5,9,4):}|

Using vectors, find the area of the triangle with vertices are A(1,2,3), B(2, -1, 4) and C(4,5,-1).