Home
Class 12
MATHS
Let omega=-(1)/(2)+i (sqrt(3))/(2), then...

Let `omega=-(1)/(2)+i (sqrt(3))/(2)`, then the value of
`[[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]]` is

A

`3omega`

B

`3omega(omega-1)`

C

`3omega^2`

D

`3omega(1-omega)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Multiple Choice Questions - LEVEL - II|42 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Latest Questions from AIEEE/JEE Examinations|5 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MODERN PUBLICATION|Exercise RCQs (Questions from Karnataka CET & COMED)|25 Videos

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i (sqrt(3))/(2) , then the value of |[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]| is

If omega=-(1)/(2)+i (sqrt(3))/(2) , the value of [[1, omega, omega^(2) ],[ omega, omega^(2), 1],[ omega^(2),1, omega]] is

The value of (1+omega^(2)+2 omega)^(3 n)-(1+omega+2 omega^(2))^(3 n)=

If 1, omega, omega^(2) are the cube roots of unity, then [[1, omega^(n),omega^(2n)],[omega^(n),omega^(2n),1],[omega^(2n), 1, omega^(n)]]

If omega is an imaginary cube root of unity ,then the value of [{:(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2)):}] is

If omega=(-1+i sqrt(3))/(2) then (3+omega+3 omega^(2))^(4)=

If omega is a complex cube root of unity , then the matrix A = [(1,omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a :

If omega is an imaginary cube root of unity then the value of [[1+omega , omega^2 , -omega],[1+omega^2 , omega , -omega^2 ],[omega^2+omega , omega , -omega^2 ]] =

If omega(ne 1) is a cube root of unity, then |{:(1,1+omega^(2),omega^(2)),(1-i,-1,omega^(2)-1),(-i,-1+omega,-1):}| equals :

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =