Home
Class 12
MATHS
If matrix A = [a(ij)] (2xx2) where a(i...

If matrix `A = [a_(ij)] _(2xx2)` where `a_(ij) {:(-1," if " i !=j ),(=0 , " if " i = j):} ` then `A^(2)` is equal to :

A

I

B

A

C

O

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|13 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|13 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos
  • MOCK TEST PAPER -I

    MODERN PUBLICATION|Exercise SELECT THE CORRECT ANSWER|60 Videos

Similar Questions

Explore conceptually related problems

Construct a 2xx2 matrix A = [a_(ij)] where a_(ij) =(i-j)/(2) .

A=[a_(ij)]_(mxxn) is a square matrix, if

Construct a 2xx2 matrix A=[a_y] where a_y=(i-j)/(2)

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

construct a 2xx3 "matrix" A=[a_(ij)] , whose elements are give by a_(ij)= {{:(i-j"," igej),(i+j"," ilt j):}

If in a square matrix A=(a_(i j)) we have a_(ji)=a_(i j) for all i , j then A is

Let P = [a_(ij)] be a 3xx3 matrix and let Q = [b_(ij)] , where b_(ij) = 2^(i+j)a_(ij) for 1 le I , j le 3 . If the determinant of P is 2 . Then tehd etarminat of the matrix Q is :

Construct a 2 x 3 matrix A = [a_ij], whose elements are given by a_(ij) ={{:(2i)/(3j):}}

For any 2xx2 matrix, if A\ (a d j\ A)=[[10 ,0 ],[0 ,10]] , then |A| is equal to