Home
Class 12
MATHS
Let f:R to R be a positive increasing fu...

Let `f:R to R` be a positive increasing function with `lim_(x to oo) (f(3x))/(f(x))=1`. Then `lim_(x to oo) (f(2x))/(f(x))=`

A

1

B

`(2)/(3)`

C

`(3)/(2)`

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (Questions from Karnataka CET & COMED)|25 Videos
  • APPLICATION OF DERIVATIVES

    MODERN PUBLICATION|Exercise Multiple Choice Questions LEVEL-II|35 Videos
  • AREA UNDER CURVES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (Question from karnataka CET & COMED)|9 Videos

Similar Questions

Explore conceptually related problems

If f(x) is differentiable increasing function, then lim_(x to 0) (f(x^(2)) -f(x))/(f(x)-f(0)) equals :

If f(x)=xtan^(-1)x , then lim_(xto1)(f(x)-f(1))/(x-1)=

Let F : R to R be a differentiable function having : f(2) = 6, f'(2) = 1/48 Then lim_(x to 2) int_(6)^(f(x)) (4 t^3)/(x-2) dt equals :

If f(x) is an odd function and lim_(x rarr 0) f(x) exists, then lim_(x rarr 0) f(x) is

If the function f(x) satisfies lim_(x rarr1)(f(x)-2)/(x^(2)-1)= pi , then lim_(x rarr 1)f(x)=

If the function f(x) satisfies lim_(x rarr 1) (f(x) - 2)/(x^(2) - 1) = pi , then lim_(x rarr 1) f(x) =

If f(x) is differentiable and strictly increasing function, then the value of lim_(x rarr 0) (f(x^(2))-f(x))/(f(x)-f(0))

If f(2) = 4 and f^(')(2) =1 then lim_(x rarr 2) (x f(2)-2f (x))/(x-2)

If f(x) = sqrt((x-sinx)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) =