Home
Class 12
MATHS
Let f(x) = {:[(e^(cos x) sinx",", "for" ...

Let `f(x) = {:[(e^(cos x) sinx",", "for" |x| le 2),(2,"otherwise"):}` then : `int_(-2)^(3) f(x) dx` = …………….

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATION|13 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) ={(e^(cosx)sinx; |x| le 2),(2 ; otherwise'):} then int_(-2)^(3) f(x) dx is equal to

Given fuction, f(x)={(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

Let f(x) = e^(cos^(-1)sin(x + pi//3)) , Then :

If g(x) = (f(x)-f(-x))/2 defined over [-3,3] and f(x) = 2x^(2)-4x+1 , then int_(-3)^(3) g(x) dx =

If 2f(x)- 3f(1/x) = x then int_1^(e) f(x) dx =

If f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi) , then int_e^(pi) xf(x) dx is equal to

Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx

Let f(x)=x^3-3x^2+2x Find f'(x)

MODERN PUBLICATION-DEFINITE INTEGRALS-MULTIPLE CHOICE QUESTIONS (LEVEL - II)
  1. int0^1 |sin 2 pi x| dx is equal to :

    Text Solution

    |

  2. If f(x) = f(a - x), then int0^(a) xf(x) dx is equal to :

    Text Solution

    |

  3. Let f(x) = {:[(e^(cos x) sinx",", "for" |x| le 2),(2,"otherwise"):} th...

    Text Solution

    |

  4. The value of integral int(e^(-1))^(e^2) |(loge x)/(x)| dx is :

    Text Solution

    |

  5. Let g(x) = int0^(x) f(t) dt, where 1/2 le f(t) < 1, t in [0,1] and 0 <...

    Text Solution

    |

  6. Let f : (0, oo ) to R and F(x) = int0^x f(t) dt. If F(x^2) = x^2(1 +...

    Text Solution

    |

  7. If (1 sin t)/(1 + t) dt = alpha, then that value of the integral : i...

    Text Solution

    |

  8. The integral int(-1//2)^(1//2) ([x] + ln ((1 + x)/(1 - x)))dx equals :

    Text Solution

    |

  9. Let f(x) = int1^x sqrt(2 - t^2)dt. Then the real roots of the equation...

    Text Solution

    |

  10. Let T > 0 be a fixed real number. Suppose f is a continuous function s...

    Text Solution

    |

  11. Let d/(dx) F(x) = ((e^(sin x))/(x)) , x > 0. If int1^4 3/x e^(sin x^3)...

    Text Solution

    |

  12. If f(y) = e^(y), g(y) = y , y > 0 and F(t) = int0^t f(t - y) g(y) dy...

    Text Solution

    |

  13. Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) ...

    Text Solution

    |

  14. If f(x) = int(x^2)^(x^2 + 1) e^(-t^2) dt, find the interval in which f...

    Text Solution

    |

  15. If f(x) = (e^x)/(1 + e^x) , I1 = int(f(-a))^(f(a)) x g {x(1 - x)} dx a...

    Text Solution

    |

  16. The value of the integral int0^1 sqrt((1 - x)/(1 + x))dx is :

    Text Solution

    |

  17. If I(1) = int0^(1) 2^(x^(2)) dx, I(2) = int0^(1) 2^(x^(3)) dx, I(3) = ...

    Text Solution

    |

  18. Let F : R to R be a differentiable function having : f(2) = 6, f'(2) =...

    Text Solution

    |

  19. lim(n to oo) [1/(n^2) "sec"^2 1/(n^2) + 2/(n^2) "sec"^(2) 4/(n^2) + ……...

    Text Solution

    |

  20. Let F(x) = f(x) + f(1/x), where , f(x) = int1^x (log t)/(1 + t) dt. Th...

    Text Solution

    |