Home
Class 12
MATHS
Let g(x) = int0^(x) f(t) dt, where 1/2 l...

Let `g(x) = int_0^(x) f(t) dt`, where `1/2 le f(t) < 1, t in [0,1] and 0 < f(t) le 1/2 "for" t in[1,2]`. Then :

A

`-3/2 le g (2) lt 1/2`

B

`0 le g(2) lt 2`

C

`3/2 lt g(2) le 5/2`

D

`2 lt g(x) lt 4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATION|13 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

Let, f(x) = int_0^(x) (cos t)/t dt . Then x = (2n+1) pi/2 , f(x) has

Let 'f' be a non-negative function defined on the interval [0,1]. If int_0^x sqrt(1 - (f'(t))^(2)) dt = int_0^x f(t) dt, 0 le x le 1 and f(0) = 0, then :

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :

If k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt , then the value of k is

Let f : (0, oo ) to R and F(x) = int_0^x f(t) dt . If F(x^2) = x^2(1 + x) , then f(4) equals :

MODERN PUBLICATION-DEFINITE INTEGRALS-MULTIPLE CHOICE QUESTIONS (LEVEL - II)
  1. Let f(x) = {:[(e^(cos x) sinx",", "for" |x| le 2),(2,"otherwise"):} th...

    Text Solution

    |

  2. The value of integral int(e^(-1))^(e^2) |(loge x)/(x)| dx is :

    Text Solution

    |

  3. Let g(x) = int0^(x) f(t) dt, where 1/2 le f(t) < 1, t in [0,1] and 0 <...

    Text Solution

    |

  4. Let f : (0, oo ) to R and F(x) = int0^x f(t) dt. If F(x^2) = x^2(1 +...

    Text Solution

    |

  5. If (1 sin t)/(1 + t) dt = alpha, then that value of the integral : i...

    Text Solution

    |

  6. The integral int(-1//2)^(1//2) ([x] + ln ((1 + x)/(1 - x)))dx equals :

    Text Solution

    |

  7. Let f(x) = int1^x sqrt(2 - t^2)dt. Then the real roots of the equation...

    Text Solution

    |

  8. Let T > 0 be a fixed real number. Suppose f is a continuous function s...

    Text Solution

    |

  9. Let d/(dx) F(x) = ((e^(sin x))/(x)) , x > 0. If int1^4 3/x e^(sin x^3)...

    Text Solution

    |

  10. If f(y) = e^(y), g(y) = y , y > 0 and F(t) = int0^t f(t - y) g(y) dy...

    Text Solution

    |

  11. Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) ...

    Text Solution

    |

  12. If f(x) = int(x^2)^(x^2 + 1) e^(-t^2) dt, find the interval in which f...

    Text Solution

    |

  13. If f(x) = (e^x)/(1 + e^x) , I1 = int(f(-a))^(f(a)) x g {x(1 - x)} dx a...

    Text Solution

    |

  14. The value of the integral int0^1 sqrt((1 - x)/(1 + x))dx is :

    Text Solution

    |

  15. If I(1) = int0^(1) 2^(x^(2)) dx, I(2) = int0^(1) 2^(x^(3)) dx, I(3) = ...

    Text Solution

    |

  16. Let F : R to R be a differentiable function having : f(2) = 6, f'(2) =...

    Text Solution

    |

  17. lim(n to oo) [1/(n^2) "sec"^2 1/(n^2) + 2/(n^2) "sec"^(2) 4/(n^2) + ……...

    Text Solution

    |

  18. Let F(x) = f(x) + f(1/x), where , f(x) = int1^x (log t)/(1 + t) dt. Th...

    Text Solution

    |

  19. The solution for x of the equation : int(sqrt2)^(x) (dt)/(tsqrt(t^2 - ...

    Text Solution

    |

  20. Let I = int0^1 (sin x)/(sqrtx) dx and J = int0^1 (cos x)/(sqrtx) dx. T...

    Text Solution

    |