Home
Class 12
MATHS
Let f be a real valued function defined ...

Let f be a real valued function defined on the interval `(-1,1)` such that `e^(-x) f(x) = 2 + int_0^x sqrt(t^4 + 1) dt`, for all `x in (-1, 0)` and let `f^(-1)` be the inverse function of f. Then `(f^(-1))'(2)` is equal to :

A

1

B

`1/3`

C

`1/2`

D

`1/e`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|42 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

Let f be a real valued function defined on (0, 1) cup (2, 4) , such that f(x)=0 , for every x, then :

Let 'f' be a non-negative function defined on the interval [0,1]. If int_0^x sqrt(1 - (f'(t))^(2)) dt = int_0^x f(t) dt, 0 le x le 1 and f(0) = 0, then :

If g is the inverse of a function f and f'(x)=(1)/(1+x^(5)) , then g'(x) is equal to :

Let f(x) = int_2^(x) (dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then g^('1)(0) =

Let f : R rarr R be a function defined by f(x) = x^3 + 5 . Then f^-1(x) is

Let f : R to R be a differentiable function and f(1) = 4 , then the value of lim_(x to 1) int_4^(f(x)) (2t)/(x - 1) dt is :

If x ne 1 and f(x)=(x+1)/(x-1) is a real function then f(f(f(2))) is

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f-g)(x)