Home
Class 12
MATHS
For x in 0,(5pi/(2)), define f(x) = int0...

For `x in 0,(5pi/(2)),` define `f(x) = int_0^x sqrt(t) sin t dt`. Then f has :

A

local maximum at `pi and 2pi`

B

local minimum at `pi` and `2pi`

C

local minimum at `pi` and local maximum at `2 pi`

D

local maximum at `pi` and local mininum at `2pi`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|42 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

If g(x) = int_0^x cos 4t dt, then g(x + pi) equals :

If g(x) = int_0^x cos^4 t dt , then g(x + pi) equals:

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :

int_0^(2pi) sqrt(1 + sin( x/2)) dx is :

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :

If F(x) = int_3^x (2 + d/(dt) cos t)dt , then F' (pi/6) equals :

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :