Home
Class 12
MATHS
The integral int(0)^(pi) sqrt(1 + 4 sin^...

The integral `int_(0)^(pi) sqrt(1 + 4 sin^2 x/2 - 4 sin x/2) dx` equals :

A

`(2pi)/3 - 4- 4sqrt(3)`

B

`4sqrt(3) - 4`

C

`4sqrt(3) - 4 - pi/3`

D

`pi - 4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|42 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

int_0^(2pi) sqrt(1 + sin( x/2)) dx is :

The value of the integral int_0^pi (x sin^(2n) x)/(sin^(2n) x + cos^(2n) x)dx is :

The value of the integral int_0^(pi//2) (sin^(100) x - cos^(100) x) dx is :

int_(0)^(pi//4) sqrt(1 -sin 2x dx) is equal to :

int sqrt(1+ sin (x/4) dx =

int sqrt(1+sin (x/2)) dx =

int_(-pi)^(pi) (2x(1 + sin x))/(1 + cos^2 x) dx is :

int_0^(pi) x f (sin x) dx is equal to :