Home
Class 12
MATHS
If f(x) = f(pi + e - x) and inte^(pi) f(...

If `f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi)`, then `int_e^(pi) xf(x) dx` is equal to

A

`(pi + e)/(2)`

B

`(pi - e)/2`

C

`pi - e`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATION|13 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi) x f (sin x) dx is equal to :

If f(x) = f(a - x) , then int_0^(a) xf(x) dx is equal to :

int (x-1)e^(-x) dx is equal to :

If 2f(x)- 3f(1/x) = x then int_1^(e) f(x) dx =

int_0^1(dx)/(e^x+e^(-x)) is equal to

Let I_(1) = int_a^(pi-a) xf (sin x) dx, I_(2) = int_a^(pi-a) f(sinx) dx then I_(2) is equal to

int_(-2)^2 |x cos pi x|dx is equal to :

int e^(x)/(e^(x)+1) dx =

If int_0^(a) f(x) dx = int_0^(a) f(a-x) dx , then the value of int_0^(pi) x. f(sin x) dx =