Home
Class 12
MATHS
The value of the integral int(-pi//4)^...

The value of the integral
`int_(-pi//4)^(pi//4)log(sec theta-tan theta)d theta` is

A

`pi/4`

B

`pi/2`

C

`0`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATION|13 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(pi/4) (sin theta + cos theta)/(9+16 sin 2 theta) d theta is

int_(-pi/2)^(pi/2) cos theta (1+ sin theta)^(2) d theta =

The value of tan theta cot theta is:

The number of values of theta in the interval (-pi/2, pi/2) such that theta ne (n pi)/5 for n =0, pm 1, pm 2 and tan theta = cot 5 theta as well as sin 2 theta=cos 4 theta is ________.

If sec theta+tan theta=1.5 then tan theta=

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

int_0^(2pi) theta sin^2 theta cos theta d theta is equal to :

Solve sqrt(2) sec theta+tan theta=1 .

The possible values of theta in (0,pi) such that sin(theta) + sin (4theta) + sin (7theta) = 0 are :