Home
Class 12
MATHS
int0^(pi//2) log(tan x)dx =...

`int_0^(pi//2) log(tan x)dx` =

A

`pi/2`

B

`0`

C

`1`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATION|13 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Recent competitive Questions|10 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

int_(0)^(pi//2) log sin x dx =

Evaulate int_(0)^(pi//4)log(1+tanx)dx .

If I = int_0^(pi/4) log (1+ tan x) dx , then I =

int_0^(pi/2) log|tanx+cotx|dx =

Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :

int_0^(pi/8) tan^(2) (2x) dx =

int e^(log(tan x) dx =