Home
Class 12
MATHS
if y=sin^-1[sqrt(x-ax)-sqrt(a-ax)] then ...

if `y=sin^-1[sqrt(x-ax)-sqrt(a-ax)]` then prove that `1/(2sqrtx sqrt(1-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)] then prove that 1/(2sqrtx sqrt(1-x))

y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)] prove tha t dy/dx is (1)/(2sqrt(x(1-x)))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=