Home
Class 14
MATHS
[1/(1xx2)+1/(2xx3)+1/(3xx4)+ ,+1/(99xx10...

`[1/(1xx2)+1/(2xx3)+1/(3xx4)+ ,+1/(99xx100)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the sum of the following series ? 1/(1 xx 2) + 1/(2 xx 3) + 1/(3 xx 4) + ………+ 1/(100 xx 101)

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

The value of 1000[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+.....+(1)/(999xx1000)] is equal to -

The value of 1000[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+cdots+(1)/(999xx1000)] is equal to

If 1/(1 xx 2) + 1/(2 xx 3) + 1/(3 xx 4) + ……….. + 1/(n(n+1)) = 99/100 then what is the value of n?

Find the sum to n terms of the series (1)/(1xx2) +(1)/(2xx3)+(1)/(3xx4) + . . . . . .

Note the specialities of fractional numbers. It can be written as 1-1/2=(2-1)/(1xx2)=1/(1xx2) 1/2-1/3=(3-2)/(2xx3)=1/(2xx3) 1/3-1/4=(4-3)/(3xx4)=1/(3xx4) now answer the following. 1/(1xx2)+1/(2xx3)+1/(3xx4)= ______