Home
Class 12
MATHS
If cosA + cosB =4sin^(2)(C/2), then...

If cosA + cosB `=4sin^(2)(C/2)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are angles in a triangle , then prove that cosA+cosB+cosC=1+4sin. (A)/(2)sin. (B)/(2) sin. (C)/(2)

Prove that cosA -cosB -cosC =1-4sin(A/2)cos(B/2)cos(C/2) ,if A+B+C= pi

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

In triangleABC,A+B+C=pi ,show that cosA+cosB-cosC=4cos(A/2)cos(B/2)sin(C/2)-1

In any triangle ABC, if sin A : sin B: sin C= 4:5:6, then prove that, cosA : cosB : cosC = 12:9:2

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

let a=cosA+cosB-cos(A+B) and b=4sin(A/2)sin(B/2)cos((A+B)/2) Then a-b is