Home
Class 12
MATHS
The number of different possible values ...

The number of different possible values for the sum x+y+z, where x,y,z are real numbers such that `x^(4)+4y^(4)+16z^(4)+64=32 xyz` is (A) 1 (B) 2 (C) 4 (D) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,y and z are real numbers such that x^(2)+y^(2)+2z^(2)=4x-2z+2yz-5, then the possible value of (x-y-z) is :

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

If x,y,z are real and 4x^(2)+9y^(2)+16z^(2)=2xyz{(6)/(x)+(4)/(y)+(3)/(z)}

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z