Home
Class 11
MATHS
Prove that sin ( A + B) sin (A - B) = ...

Prove that
` sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin (A + B) sin (A - B) = sin^2A- sin^2B .

Prove that sin^(2)(A + B) - sin^(2)(A - B) = sin 2A sin 2B

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that : 2sin A cosB = sin (A + B) + sin (A -B) .

sum(sin (A+B) sin (A-B))/(sin^(2)A sin^(2)B)=

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0

Prove that sin(A+B)sin(A-B)=sin^2A-sin^2B

If A + B + C =180^@ , prove that : sin (B + 2C) + sin (C + 2A) + sin (A + 2B) = 4 sin frac (B-C)(2) sin frac (C-A)(2) sin frac (A-B)(2) .

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B