Home
Class 12
MATHS
The number of integral roots of the equa...

The number of integral roots of the equaiton. `sin^-1|sinx|=cos^-1(cosx)` in `x in[0,4pi]` are

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral roots of the equaiton.sin^(-1)|sin x|=cos^(-1)(cos x) in x in[0,4 pi] are

Number of integral solutions of the equation sin^(-1)(sinx)=cos^(-1)(cosx)" in "[0, 5pi] is

The number of solution of the equaiton 1+sin x cos x=2sin x cos x in x in [0,4 pi] are (A) 4 (B) 5 (C) 7 (D) None of these

The number of solution (s) of the equation sin^4 x + cos^4 x = sinx cosx in [0 , 2pi]

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

The number of distinct real roots of the equation |{:(cosx, sinx, sinx), (sinx, cosx, sinx), (sinx, sinx, cosx):}|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1