Home
Class 12
PHYSICS
vec(r)=15t^(2)i+(20-20t^(2))j find mag...

`vec(r)=15t^(2)i+(20-20t^(2))j`
find magnitude of acceleration at `t=1` sec.

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vector of a partcle vecr(t)=15t^(2)hati+(4-20t^(2))hatj . What is the magnitude of the acceleration (in m//s^(2) ) at t=1?

The position vector of a particle changes with time according to the direction vec(r)(t)=15 t^(2)hati+(4-20 t^(2))hatj . What is the magnitude of the acceleration at t=1?

The position vector of a particle changes with time according to the relation vec(r ) (t) = 15 t^(2) hat(i) + (4 - 20 t^(2)) hat(j) What is the magnitude of the acceleration at t = 1?

If the velocity is vec(v) = 2 hat(i) + t^(2) hat(j) - 9 vec(k) , then the magnitude of acceleration at t = 0 . 5 s is :

If v=(t^(2)-4t+10^(5)) m/s where t is in second. Find acceleration at t=1 sec.

A particle moves in circle of radius 1.0 cm at a speed given by v=2.0 t where v is in cm/s and t in seconeds. A. find the radia accelerationof the particle at t=1 s. b. Findthe tangential acceleration at t=1s. c.Find the magnitude of the aceleration at t=1s.

A particle moves in circle of radius 1.0 cm at a speed given by v=2.0 t where v is in cm/s and t in seconeds. A. find the radia accelerationof the particle at t=1 s. b. Findthe tangential acceleration at t=1s. c.Find the magnitude of the aceleration at t=1s.

A particle moves in circle of radius 1.0 cm at a speed given by v=2.0 t where v is in cm/s and t in seconeds. A. find the radia accelerationof the particle at t=1 s. b. Findthe tangential acceleration at t=1s. c.Find the magnitude of the aceleration at t=1s.

The displacement s of a particle at time t is given by s = t^3 -4 t^2 -5t. Find the velocity and acceleration at t=2 sec

A particle moves in such a way that its position vector at any time t is vec(r)=that(i)+1/2 t^(2)hat(j)+that(k) . Find as a function of time: (i) The velocity ((dvec(r))/(dt)) (ii) The speed (|(dvec(r))/(dt)|) (iii) The acceleration ((dvec(v))/(dt)) (iv) The magnitude of the acceleration (v) The magnitude of the component of acceleration along velocity (called tangential acceleration) (v) The magnitude of the component of acceleration perpendicular to velocity (called normal acceleration).