Home
Class 11
MATHS
यदि a+ib=(1+i)(1+2i), तो a^(2)+b^(2)=...

यदि `a+ib=(1+i)(1+2i)`, तो `a^(2)+b^(2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

a+ib=(1+i)(1+2i)(1+3i) then a^(2)+b^(2)=

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

If z=a+ib and Z=A+iB then show thatif z=(i(Z+1))/(z-1) then a^(2)+b^(2)-a=((A^(2)+B^(2)+2A-2B+1)/((A-1)^(2)+B^(2)))

Write the following in the form of a + ib, (1+ 2i) (1+3i) (2+i)^(-1)

a+ib: (1)/((2+i)^(2))-(1)/((2-i)^(2))

If ((1+i)(2+3i)(3-4i))/((2-3i)(1-i)(3+4i)) = a + ib , then a^(2) + b^(2) is equal to

Write the following in the form a+ib:(1)/((2+i)^(2))-(1)/((2-i)^(2))

If sqrt((1+i)/(1-i))=(a+ib) then show that (a^(2)+b^(2))=1 .

If a+ib = sqrt((1+i)/(1-i)) , prove that a^2+b^2=1