Home
Class 12
MATHS
y=e^(ax)sinbx," show that "(d^(2)y)/(dx^...

y=e^(ax)sinbx," show that "(d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(ax)cos bx, Show that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

If y=e^(ax)sinbx," then "(d^(2)y)/(dx^(2))-2a(dy)/(dx)=

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=

If y=e^(ax)cosbx , then prove that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax)cosbx , then prove that : (d^(2)y)/(dx^(2))-2ady/dx+(a^(2)+b^(2))y=0 .

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .