Home
Class 12
MATHS
int(-1)^(1)e^(|x|)dx=2(e-1)...

int_(-1)^(1)e^(|x|)dx=2(e-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(2x)dx

int_(-1)^(1)|x|e^(x)dx

int_(-1)^(1)(e^(x)+1)/(e^(x)-1)dx= . . . . . . . .

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

int_(-1)^(1)(e^(x)-e^(-x))dx=

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

If int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(2)))=A then int_(0)^( pi)(e^(|sin x|)+e^(|cos x|))dx=