Home
Class 12
MATHS
int(-1)^(3)(tan^(-1)(x)/(x^(2)+1)+tan^(-...

int_(-1)^(3)(tan^(-1)(x)/(x^(2)+1)+tan^(-1)(x^(2)+1)/(x))dx," equals- "

Promotional Banner

Similar Questions

Explore conceptually related problems

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

The value of the integral int_(-4)^(4)[tan^(-1)((x)/(x^(4)+1))+tan^(-1)((x^(4)+1)/(x))]dx equals

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

Evaluate: int_(-1)^3(tan^(-1)x/(x^2+1)+tan^(-1)(x^2+1)/x)dx

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx