Home
Class 12
MATHS
" 12."y=sin^(-1)((1-x^(2))/(1+x^(2))),0<...

" 12."y=sin^(-1)((1-x^(2))/(1+x^(2))),0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^(2))/(1+x^(2))),0

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Find dy/dx If y=sin^(-1)(frac(1-x^2)(1+x^2)) , 0 < x < 1

y = sin^(-1)((1-x^2)/(1+x^2)), 0 lt x lt 1 .

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

Find dy/dx in the following: y=sin^-1((1 - x^2)/(1+x^2), 0

Find the value of: tan((1)/(2)[(sin^(-1)(2x))/(1+x^(2))+(cos^(-1)(1-y^(2)))/(1+y^(2))]),|x| 0 and xy,|x| 0

For y=sin^(-1){(5x+12sqrt(1-x^(2)))/(13)}, |x| le 1 , if a(1-x^(2))y_(2) +bxy_(1)=0 then (a, b) =

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

if y=(1)/(2)sin^(-1)((2xy)/(x^(2)+y^(2))) and y