Home
Class 11
MATHS
(sin2A+sin2B+sin2C)/(sin A+sin B+sin C)=...

(sin2A+sin2B+sin2C)/(sin A+sin B+sin C)=8sin(A)/(2)sin(B)/(2)sin(C)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^(@) , (sin2A+sin2B+sin2C)/(sin A+sin B+sin C)=K sin(A)/(2)sin(B)/(2)sin(C)/(2) then the value of 3K^(3)+2K^(2)+K+1 is equal to

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(sin A + sin B +sin C)= 8 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A+B+C= pi and (sin 2 A + sin 2B + sin 2 C)/(sin A + sin B + sin C ) = lamda sin ((A)/(2)) sin ((B)/(2)) sin ((C )/(2)) , then the value of lamda must be

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))